Learn how to solve problems that calculators can't

$999999 \times 222222+333333 \times 333334=$?

Computing Large Whole Numbers Math Olympiad Training

SUPPAHOB

LEARNING NEW SKILLS

The Concept

$$
\begin{aligned}
1234 & =1000 \times a+100 \times b+10 \times c+1 \times d \\
& =1000 \times 1+100 \times 2+10 \times 3+1 \times 4 \\
& =1000+200+30+4
\end{aligned}
$$

Try: 543

$$
\begin{aligned}
543 & =100 \times 5+10 \times 4+3 \\
& =500+40+3
\end{aligned}
$$

Example 1 - Simplification

$999999 \times 222222+333333 \times 333334=$?
$=(333333 \times 3 \times 222222)+(333333 \times 333334)$
$=333333 \times[(3 \times 222222)+(333334)]$
$=333333 \times(666666+333334)$
= 333333×1000000
= 333333000000

Simple subtraction tips

2200-22
$=2178$

222000-222
= 221778

22220000-2222
= 22217778

Simple subtraction tips

3300-33
= 3267

333 000-333
= 332667

Example 2 - Find sum of digits

Find the sum of all digits of $333 . . .333 \times 666 \ldots 666$.
2008 3s 2008 6s

```
333... }333\times666...66
= 333... }333\times3\times222... 22
= 999...999 x 222... }22
= (1000...000-1) x 222... }22
    2008 0s 2008 2s
= 222... 222 000... 000-222... }22
```


$2+7=9$ (How many pairs of $9 ?$)
$1+8=9$ - one more here
$2008 \times 9=18072$

Example 3 - using Algebra

The sum of three digits is 21 .
Digit in the ones place is greater than the tens place.
A new number is 198 more than the original one, is formed by interchanging the digit in the ones place with the digit in the hundreds place.

What is the original number?

Solution

1. Represent the 3 digit number as "abc".
2. Guess the number -> $a b c=$? 678 - is it only answer?
3. Equation (1) : $100 \mathrm{a}+10 \mathrm{~b}+\mathrm{c}=\mathrm{abc}$
Try - 759?
4. Equation (2) : $100 \mathrm{c}+10 \mathrm{~b}+\mathrm{a}-\mathrm{abc}=198$ (after interchanging)

$$
957-759=198
$$

5. Solve the equations:
```
100c+10b+a-(100a + 10b +c) = 198
99c-99a = 198
99(c-a) = 198
c-a=198 / 99
c-a = 2
```


Example 4 - Application of Algebra

Miss C was born on the $1^{\text {st }}$ January many years ago. In 2002, her age was the sum of all the four digits of the year that she was born in. How old was Miss C in 2002?

Solution

1. Express the year she was born in using equation: $1000+100 a+10 b+c$ since she must be born before year 2000.
2. Her age $=$ sum of digits of the year she was born
3. $2002-(1000+100 a+10 b+c)=1+a+b+c$

Answer:

Miss C is born in 1982
$2002-1982=20=>$
And she is 20 in 2002
6. $\quad b=(92-2 c) / 11$
7. Since b must be a whole number - we can guess c has to be 2 .

