$$
\begin{aligned}
& \qquad \qquad \begin{array}{cl}
5 x+6 y=\$ 84.50 & \text {...(1) } \\
2 x+3 y=\$ 41 & \ldots(2) \\
\text { 2. Solving Problems Quickly With Algebra } \\
\text { Math Olympiad Training }
\end{array}
\end{aligned}
$$

Revising basic Algebra

1. A problem can be expressed using Equations
2. No. of equations $>=$ No. of variables
3. Let a character represent a variable
4. Units can be used for checking
5. Substitute value into another equation to check

Revising basic Algebra

X cost 2 times of Y
5 of X and 10 of Y cost $\$ 200$.
Find X and Y.

> Solution
> $X=2 Y$
> $5 X+10 Y=200$
> $5(2 Y)+10 Y=\$ 200$
> $10 Y+10 Y=\$ 200$
> $20 Y=\$ 200$
> $Y=\$ 200 / 20$
> $Y=\$ 10$
> $X=2 x \$ 10=\$ 20$

Example 1 on Replacement / Substitution

5 tables and 18 chairs cost $\$ 594$.
The cost of one table is same as cost of 3 chairs.
Find the cost of a table and a chair.
Solution
$\mathrm{x}=$ Tables $\mathrm{y}=$ Chairs
$5 x+18 y=\$ 594$ (1)
$x=3 y$ (2)
Substitute (2) into (1)
$5(3 y)+18 y=\$ 594$
$15 y+18 y=\$ 594$
$33 y=\$ 594$
$y=\$ 18$
Substitute y into (2)
$\mathrm{x}=3 \mathrm{x} \$ 18=\$ 54$

Example 2 - Money

4 basketballs and 6 footballs cost $\$ 460$.
A basketball is $\$ 15$ more expensive than a football.
How much is each basketball?
How much is each football?

Solution

x - basketball, y - football
$4 x+6 y=\$ 460$...(1)
$x=y+\$ 15 \quad . . .(2)$
Substitute (2) into (1)
$4(y+15)+6 y=\$ 460$
$4 y+\$ 60+6 y=\$ 460$
$10 y=\$ 400$
$y=\$ 40$

```
Substitute y into (2)
x = $40 + $15
x =$55
```


Example 3 - Elimination

5 kg of sugar and 6 kg of rice cost $\$ 84.50$
2 kg of sugar and 3 kg of rice cost $\$ 41$
How much is 1 kg of sugar? How much is 1 kg of rice?

Solution

x - price of sugar per kg

$$
\begin{aligned}
3 y & =\$ 41-2 x \\
y & =(\$ 41-2 x) / 3 \\
& =(\$ 41-2(2.50)) / 3 \\
& =\$ 36 / 3 \\
& =\$ 12
\end{aligned}
$$

Example 4 - Substitution

If 10 rabbits can be exchanged for 2 goats, 9 goats be exchanged for 3 cows and 8 cows be exchanged for 2 horses.
How many rabbits can 5 horses be exchanged for?

Solution

r - rabbits, g - goats
c - cows, h - horses
$10 r=2 \mathrm{~g} . . .(1)$
$9 \mathrm{~g}=3 \mathrm{c} . . .(2)$
$8 \mathrm{c}=2 \mathrm{~h} . . .(3)$
$\mathrm{g}=5 \mathrm{r}$
Sub into equ (2)
$9(5 r)=3 c$
$3 c=45 r$
$\mathrm{c}=15 \mathrm{r}$

Example 5 - Speed

It takes Mark a total of 25 minutes to run a distance of 1000 m and then walk another 2000 m .
It also takes him 25 min to run a distance of 4000 m and then walk another 500 m .
How fast can Mark run?

Solution

$r=$ speed of Mark's running $(\mathrm{m} / \mathrm{min})=>x=1 / r(\mathrm{~min} / \mathrm{m})$
$\mathrm{w}=$ speed of Mark's walking $(\mathrm{m} / \mathrm{min})=>\mathrm{y}=1 / \mathrm{w}(\mathrm{min} / \mathrm{m})$
$1000 / r+2000 / w=25 \ldots(1)=>1000 x+2000 y=25 \ldots$ (1)
$4000 / r+500 / w=25 \ldots(2)=>4000 x+500 y=25 \ldots(2)$
Multiply eqn (2) by 4
$16000 x+2000 y=100 \ldots$...(3)
Eqn (3) - Eqn (1)
$15000 x=75$
$x=75 / 15000 \mathrm{~min} / \mathrm{m}$
$=1 / 200 \mathrm{~min} / \mathrm{m}$
$r=200 \mathrm{~m} / \mathrm{min}$

Credits

2. Solve by Comparison \& Replacement

